363 research outputs found

    Recognising Multidimensional Euclidean Preferences

    Full text link
    Euclidean preferences are a widely studied preference model, in which decision makers and alternatives are embedded in d-dimensional Euclidean space. Decision makers prefer those alternatives closer to them. This model, also known as multidimensional unfolding, has applications in economics, psychometrics, marketing, and many other fields. We study the problem of deciding whether a given preference profile is d-Euclidean. For the one-dimensional case, polynomial-time algorithms are known. We show that, in contrast, for every other fixed dimension d > 1, the recognition problem is equivalent to the existential theory of the reals (ETR), and so in particular NP-hard. We further show that some Euclidean preference profiles require exponentially many bits in order to specify any Euclidean embedding, and prove that the domain of d-Euclidean preferences does not admit a finite forbidden minor characterisation for any d > 1. We also study dichotomous preferencesand the behaviour of other metrics, and survey a variety of related work.Comment: 17 page

    Pareto-Optimal Allocation of Indivisible Goods with Connectivity Constraints

    Full text link
    We study the problem of allocating indivisible items to agents with additive valuations, under the additional constraint that bundles must be connected in an underlying item graph. Previous work has considered the existence and complexity of fair allocations. We study the problem of finding an allocation that is Pareto-optimal. While it is easy to find an efficient allocation when the underlying graph is a path or a star, the problem is NP-hard for many other graph topologies, even for trees of bounded pathwidth or of maximum degree 3. We show that on a path, there are instances where no Pareto-optimal allocation satisfies envy-freeness up to one good, and that it is NP-hard to decide whether such an allocation exists, even for binary valuations. We also show that, for a path, it is NP-hard to find a Pareto-optimal allocation that satisfies maximin share, but show that a moving-knife algorithm can find such an allocation when agents have binary valuations that have a non-nested interval structure.Comment: 21 pages, full version of paper at AAAI-201

    Simple Causes of Complexity in Hedonic Games

    Full text link
    Hedonic games provide a natural model of coalition formation among self-interested agents. The associated problem of finding stable outcomes in such games has been extensively studied. In this paper, we identify simple conditions on expressivity of hedonic games that are sufficient for the problem of checking whether a given game admits a stable outcome to be computationally hard. Somewhat surprisingly, these conditions are very mild and intuitive. Our results apply to a wide range of stability concepts (core stability, individual stability, Nash stability, etc.) and to many known formalisms for hedonic games (additively separable games, games with W-preferences, fractional hedonic games, etc.), and unify and extend known results for these formalisms. They also have broader applicability: for several classes of hedonic games whose computational complexity has not been explored in prior work, we show that our framework immediately implies a number of hardness results for them.Comment: 7+9 pages, long version of a paper in IJCAI 201

    Causal Inference on Discrete Data using Additive Noise Models

    Full text link
    Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. Recently, methods using additive noise models have been suggested to approach the case of continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work we extend the notion of additive noise models to these cases. We prove that whenever the joint distribution \prob^{(X,Y)} admits such a model in one direction, e.g. Y=f(X)+N, N \independent X, it does not admit the reversed model X=g(Y)+\tilde N, \tilde N \independent Y as long as the model is chosen in a generic way. Based on these deliberations we propose an efficient new algorithm that is able to distinguish between cause and effect for a finite sample of discrete variables. In an extensive experimental study we show that this algorithm works both on synthetic and real data sets

    backShift: Learning causal cyclic graphs from unknown shift interventions

    Full text link
    We propose a simple method to learn linear causal cyclic models in the presence of latent variables. The method relies on equilibrium data of the model recorded under a specific kind of interventions ("shift interventions"). The location and strength of these interventions do not have to be known and can be estimated from the data. Our method, called backShift, only uses second moments of the data and performs simple joint matrix diagonalization, applied to differences between covariance matrices. We give a sufficient and necessary condition for identifiability of the system, which is fulfilled almost surely under some quite general assumptions if and only if there are at least three distinct experimental settings, one of which can be pure observational data. We demonstrate the performance on some simulated data and applications in flow cytometry and financial time series. The code is made available as R-package backShift
    corecore